In the problem, we observe that:

\[x = \theta + \text{error} \]

Let's consider an approximation of this form:

\[x = \theta + \text{error} \]

This leads to the conclusion that:

\[x = \theta + \text{error} \]

We must therefore address the issue of errors.

\[x = \theta + \text{error} \]

The approximation cannot be improved further to achieve the desired accuracy.

\[x = \theta + \text{error} \]

For large values of \(\lambda \), the approximation is not accurate.

\[x = \theta + \text{error} \]

We must therefore reassess the approximation to achieve better results.

\[x = \theta + \text{error} \]

The correct approximation is:

\[x = \theta + \text{error} \]

This leads to the conclusion that:

\[x = \theta + \text{error} \]

We must therefore reassess the approximation to achieve better results.

\[x = \theta + \text{error} \]

The correct approximation is:

\[x = \theta + \text{error} \]

This leads to the conclusion that:

\[x = \theta + \text{error} \]

We must therefore reassess the approximation to achieve better results.

\[x = \theta + \text{error} \]
\[H = \sum \frac{1}{2} \rho(x)^2 + f(x) \]

\[\rho(x) = \int_{-\infty}^{x} \rho(y) \, dy \]

\[V(x) = \int_{-\infty}^{x} V(y) \, dy \]

\[E(x) = \int_{-\infty}^{x} E(y) \, dy \]

\[\rho(x) \rightarrow 0 \text{ as } x \rightarrow \infty \]

\[\rho(x) \rightarrow 0 \text{ as } x \rightarrow \infty \]

\[V(x) \rightarrow V_{\text{const}} \text{ as } x \rightarrow \infty \]

\[E(x) \rightarrow E_{\text{const}} \text{ as } x \rightarrow \infty \]

\[p(x) \rightarrow 0 \text{ as } x \rightarrow \infty \]

\[f(x) \rightarrow 0 \text{ as } x \rightarrow \infty \]

\[\frac{\partial}{\partial x} \rho(x) + \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x-x_0)^2}{2\sigma^2} \right) \]

\[\rho(x) \approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x-x_0)^2}{2\sigma^2} \right) \]

\[\rho(x) \approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x-x_0)^2}{2\sigma^2} \right) \]

\[V(x) \approx V(x_0) + \frac{1}{2} \left(\frac{\partial^2 V}{\partial x^2} \right) (x-x_0)^2 \]

\[E(x) \approx E(x_0) + \frac{1}{2} \left(\frac{\partial^2 E}{\partial x^2} \right) (x-x_0)^2 \]

\[\frac{\partial^2 \rho}{\partial x^2} \approx 0 \]

\[\frac{\partial^2 V}{\partial x^2} \approx 0 \]

\[\frac{\partial^2 E}{\partial x^2} \approx 0 \]

\[\rho(x) \approx \rho(x_0) \]

\[V(x) \approx V(x_0) \]

\[E(x) \approx E(x_0) \]
Further out, we can obtain
\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

Further out, we have an analytic behavior
\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

Furthermore, have an analytic behavior
\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

So an expression of such must be this same
\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

Thus, must be unchanged: (*)

\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

This is an equation for normalizing
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

Solution is any function
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

Any equation
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

And if in this
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

Solve for x and rescale t
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

In the limit of long
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

Solutions are
corresponding exactly
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

and some correspondingly
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

Further out, we have an analytic behavior
\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

Further out, we can obtain
\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

Further out, we have an analytic behavior
\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

So an expression of such must be this same
\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

Thus, must be unchanged: (*)

\[f(x) = \frac{c}{x^2} - \frac{d}{x} + \frac{e}{x} \]

This is an equation for normalizing
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

Solution is any function
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

Any equation
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

And if in this
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

Solve for x and rescale t
\[f(t) = \frac{c}{t^2} - \frac{d}{t} + \frac{e}{t} \]

In the limit of long
\[E = \frac{1}{2}m(a+\frac{v}{2}) \]

(exact)

\[\int_{-\frac{v}{2}}^{\frac{v}{2}} \left(\mathbf{F} \cdot \mathbf{v} \right) dy = \int_{-\frac{v}{2}}^{\frac{v}{2}} \left(\frac{mE}{2} - \frac{mE}{4} \right) dy = \left(\frac{mE}{2} - \frac{mE}{4} \right) \frac{v}{2} \]

\[\frac{mE}{2} = \frac{mE}{4} \]

\[x = \pm \sqrt{4E} \]

Simple example:

\[V(x) = x^2 \]

(from o.e.)

\[\frac{1}{2} \int_{-\frac{v}{2}}^{\frac{v}{2}} \mathbf{F} \cdot \mathbf{v} \, dx = \left(\frac{mE}{2} - \frac{mE}{4} \right) \frac{v}{2} \]

\[\text{Sommerfeld quantization} \]

\[x = \frac{\sqrt{4E}}{2} \]

Condition for discontinuous solution: